Theory Exercises

Time Conversion

Time measurement is uniquely complex among all physical quantities because it combines multiple historical systems that create a fascinating mathematical challenge. Unlike most scientific measurements that use consistent base-10 systems, time mixes decimal, sexagesimal (base-60), base-24, and astronomical systems in ways that would make any mathematician both fascinated and frustrated.

Why Time is "Crazy": Imagine trying to explain to an alien why we count seconds in powers of 10 (milliseconds, microseconds), but then suddenly switch to base-60 for minutes and hours, then to base-24 for days, and finally to an irregular astronomical system for years. This isn't poor design - it's the beautiful chaos of human history meeting mathematical necessity.

The Historical Mess That Became Our Time System

The International System (SI) base unit of time is the second (s), but the story of how we got here involves ancient Babylonians, Egyptian priests, Roman politicians, and French revolutionaries all trying to organize time in different ways.

UnitSymbolMathematical SystemEquivalenceHistorical Origin
NanosecondnsDecimal (10⁻⁹)10⁻⁹ sModern scientific (SI prefixes)
MicrosecondμsDecimal (10⁻⁶)10⁻⁶ sModern scientific (SI prefixes)
MillisecondmsDecimal (10⁻³)10⁻³ sModern scientific (SI prefixes)
SecondsSI Base Unit1 sAtomic definition (Cesium-133)
MinuteminSexagesimal (base-60)60 sBabylonian mathematics (~2000 BCE)
HourhSexagesimal (60 min)60 minBabylonian × Egyptian (24-hour day)
DaydBase-2424 hEgyptian timekeeping
WeekwkBase-77 daysJudeo-Christian tradition
MonthmoIrregular (28-31 days)30 daysLunar cycles + Roman politics
YearyAstronomical365.25 daysEarth's orbital period

The Mathematical Challenge

Notice how converting time requires constantly switching between different mathematical bases:

Example: Converting 1 day to seconds involves multiple bases: \(1 \text{ day} \times \frac{24 \text{ h}}{1 \text{ day}} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} = 86,400 \text{ s}\) Mathematical bases involved:
  • Base-24: 24 hours per day (Egyptian system)
  • Base-60: 60 minutes per hour (Babylonian system)
  • Base-60: 60 seconds per minute (Babylonian system)

Comprehensive Time Conversion Table

The following table demonstrates the mathematical complexity of time conversions, showing how different base systems create unique conversion factors:

Desired ConversionMathematical Systems InvolvedFormula and Calculation
2.5 h to secondsSexagesimal × Sexagesimal\(2.5 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} = 9000 \text{ s}\)
1500 ms to secondsDecimal (base-10)\(1500 \text{ ms} \times \frac{1 \text{ s}}{1000 \text{ ms}} = 1.5 \text{ s}\)
3.5 days to hoursBase-24\(3.5 \text{ days} \times \frac{24 \text{ h}}{1 \text{ day}} = 84 \text{ h}\)
120 min to hoursSexagesimal (base-60)\(120 \text{ min} \times \frac{1 \text{ h}}{60 \text{ min}} = 2 \text{ h}\)
2 weeks to hoursBase-7 × Base-24\(2 \text{ weeks} \times \frac{7 \text{ days}}{1 \text{ week}} \times \frac{24 \text{ h}}{1 \text{ day}} = 336 \text{ h}\)
0.5 years to secondsAstronomical × Base-24 × Sexagesimal²\(0.5 \text{ y} \times \frac{365.25 \text{ d}}{1 \text{ y}} \times \frac{24 \text{ h}}{1 \text{ d}} \times \frac{3600 \text{ s}}{1 \text{ h}} ≈ 1.58 \times 10^7 \text{ s}\)
5000 μs to msDecimal (10³ relationship)\(5000 \text{ μs} \times \frac{1 \text{ ms}}{1000 \text{ μs}} = 5 \text{ ms}\)
1 day to microsecondsBase-24 × Sexagesimal² × Decimal⁶\(1 \text{ day} \times \frac{24 \text{ h}}{1 \text{ day}} \times \frac{3600 \text{ s}}{1 \text{ h}} \times \frac{10^6 \text{ μs}}{1 \text{ s}} = 8.64 \times 10^{10} \text{ μs}\)
2.5 centuries to secondsBase-100 × Astronomical × Base-24 × Sexagesimal²\(2.5 \text{ cent} \times \frac{100 \text{ y}}{1 \text{ cent}} \times \frac{3.15 \times 10^7 \text{ s}}{1 \text{ y}} = 7.88 \times 10^9 \text{ s}\)

Practical Time Conversion Examples

Example 1: Carbon-14 has a half-life of 5 730 years. Express this in seconds.
Solution: \(5730 \text{ years} \times \frac{365.25 \text{ days}}{1 \text{ year}} \times \frac{24 \text{ h}}{1 \text{ day}} \times \frac{3600 \text{ s}}{1 \text{ h}}\) \(= 5730 \times 365.25 \times 24 \times 3600 = 1.81 \times 10^{11} \text{ s}\) Answer: 1.81 × 10¹¹ seconds
Example 2: A chemical reaction proceeds at a rate where concentration decreases by 0.05 M every 30 seconds. What is the rate in M/minute?
Solution: \( \text{Rate} = \frac{0.05 \text{ M}}{30 \text{ s}} \times \frac{60 \text{ s}}{1 \text{ min}} = 0.1 \text{ M/min}\) Answer: 0.1 M/min
Example 3: A sound wave has a frequency of 1000 Hz. If the speed of sound is 343 m/s, find the period and wavelength.
Finding the period: \(T = \frac{1}{f} = \frac{1}{1000 \text{ Hz}} = 1.0 \times 10^{-3} \text{ s} = 1.0 \text{ ms}\) Finding the wavelength: \(\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{1000 \text{ Hz}} = 0.343 \text{ m} = 34.3 \text{ cm}\) Answer: Period = 1.0 ms, Wavelength = 34.3 cm
Example 4: Light from the nearest star (Proxima Centauri) takes 4.24 years to reach Earth. Express this travel time in seconds and compare to a human lifetime (~80 years).
Light travel time: \(4.24 \text{ years} \times \frac{3.15 \times 10^7 \text{ s}}{1 \text{ year}} = 1.34 \times 10^8 \text{ s}\) Human lifetime: \(80 \text{ years} \times \frac{3.15 \times 10^7 \text{ s}}{1 \text{ year}} = 2.52 \times 10^9 \text{ s}\) Comparison: \( \frac{2.52 \times 10^9}{1.34 \times 10^8} \approx 19\) Answer: Light travel time = 1.34 × 10⁸ s, which is about 1/19 of a human lifetime
Example 5: A laboratory experiment runs for exactly 2 weeks, 3 days, 4 hours, 25 minutes, and 750 milliseconds. Convert this complex time period to seconds, showing how many different mathematical bases are involved.
Breaking down each component: Weeks to seconds (Base-7 × Base-24 × Sexagesimal²): \(2 \text{ weeks} \times \frac{7 \text{ days}}{1 \text{ week}} \times \frac{24 \text{ h}}{1 \text{ day}} \times \frac{3600 \text{ s}}{1 \text{ h}} = 1 209 600 \text{ s}\) Days to seconds (Base-24 × Sexagesimal²): \(3 \text{ days} \times \frac{24 \text{ h}}{1 \text{ day}} \times \frac{3600 \text{ s}}{1 \text{ h}} = 259 200 \text{ s}\) Hours to seconds (Sexagesimal²): \(4 \text{ h} \times \frac{3600 \text{ s}}{1 \text{ h}} = 14 400 \text{ s}\) Minutes to seconds (Sexagesimal): \(25 \text{ min} \times \frac{60 \text{ s}}{1 \text{ min}} = 1500 \text{ s}\) Milliseconds to seconds (Decimal): \(750 \text{ ms} \times \frac{1 \text{ s}}{1000 \text{ ms}} = 0.75 \text{ s}\) Total time calculation: \(1 209 600 + 259 200 + 14 400 + 1500 + 0.75 = 1 484 700.75 \text{ s}\) Mathematical bases involved:
  • Base-7 (weeks)
  • Base-24 (days to hours)
  • Base-60 (hours to minutes, minutes to seconds)
  • Base-10 (milliseconds to seconds)
Answer: 1 484 700.75 seconds - requiring FOUR different mathematical bases in one calculation! This perfectly demonstrates why time measurement is uniquely complex among all physical quantities.