Theory Exercises

One-Dimensional (Linear) Unit Conversion

One-dimensional unit conversion deals with linear measurements - quantities that have only one dimension, such as length, time, mass, temperature, and electric current.

Metric Prefixes Table

The International System of Units (SI) uses prefixes to indicate multiples and submultiples of base units:

PrefixSymbolFactorDecimalScientific NotationExample
teraT1 000 000 000 0001 trillion10¹²1 Tm = 10¹² m
gigaG1 000 000 0001 billion10⁹1 GHz = 10⁹ Hz
megaM1 000 0001 million10⁶1 MHz = 10⁶ Hz
kilok1 0001 thousand10³1 km = 10³ m
hectoh1001 hundred10²1 hm = 10² m
decada10ten10¹1 dam = 10¹ m
base unit1one10⁰1 m, 1 g, 1 s
decid0.1one tenth10⁻¹1 dm = 10⁻¹ m
centic0.01one hundredth10⁻²1 cm = 10⁻² m
millim0.001one thousandth10⁻³1 mm = 10⁻³ m
microμ0.000001one millionth10⁻⁶1 μm = 10⁻⁶ m
nanon0.000000001one billionth10⁻⁹1 nm = 10⁻⁹ m
picop0.000000000001one trillionth10⁻¹²1 pm = 10⁻¹² m

Conversion Factors

Step-by-Step Process

  1. Find equality: You can use more than one equality to relate different units
  2. Put the equality as fraction equal to 1: Place units that you want to change in the opposite position
  3. Calculate and check units: Perform the arithmetic and ensure all units have been converted

Understanding Conversion Factors

A conversion factor is a fraction that equals 1, created from any equality between units. These fractions allow us to change the units of a measurement without changing its value.

Key principle: Every equality gives us two conversion factors. For example, from the equality 1 km = 1 000 m, we can create:

\[ \frac{1 \text{ km}}{1 000 \text{ m}} = 1 \quad \text{or} \quad \frac{1 000 \text{ m}}{1 \text{ km}} = 1\]

How to choose the right factor: Use the conversion factor where the unwanted unit cancels out, leaving only the desired unit.

Conversion Examples Table

Desired ConversionEquivalence RelationshipFormula and Calculation
Length: km → m
2.5 km to meters
1 km = 1 000 m\(2.5 \text{ km} \times \frac{1000 \text{ m}}{1 \text{ km}} = 2.5 \times 1000 \text{ m} = 2500 \text{ m}\)
Length: mm → m
750 mm to meters
1 000 mm = 1 m\(750 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} = \frac{750}{1000} \text{ m} = 0.75 \text{ m}\)
Length: cm → mm
4.2 cm to millimeters
1 cm = 10 mm\(4.2 \text{ cm} \times \frac{10 \text{ mm}}{1 \text{ cm}} = 4.2 \times 10 \text{ mm} = 42 \text{ mm}\)
Time: h → min
3.5 hours to minutes
1 h = 60 min\(3.5 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} = 3.5 \times 60 \text{ min} = 210 \text{ min}\)
Time: min → s
45 minutes to seconds
1 min = 60 s\(45 \text{ min} \times \frac{60 \text{ s}}{1 \text{ min}} = 45 \times 60 \text{ s} = 2700 \text{ s}\)
Time: h → s (multi-step)
2.5 hours to seconds
1 h = 60 min
1 min = 60 s
\(2.5 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} = 2.5 \times 60 \times 60 \text{ s} = 9000 \text{ s}\)
Mass: kg → g
3.2 kg to grams
1 kg = 1 000 g\(3.2 \text{ kg} \times \frac{1000 \text{ g}}{1 \text{ kg}} = 3.2 \times 1000 \text{ g} = 3200 \text{ g}\)
Mass: mg → g
850 mg to grams
1 000 mg = 1 g\(850 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} = \frac{850}{1000} \text{ g} = 0.85 \text{ g}\)
Mass: tonnes → kg
0.75 tonnes to kg
1 tonne = 1 000 kg\(0.75 \text{ tonnes} \times \frac{1000 \text{ kg}}{1 \text{ tonne}} = 0.75 \times 1000 \text{ kg} = 750 \text{ kg}\)
Frequency: MHz → Hz
95.5 MHz to Hz
1 MHz = 10⁶ Hz\(95.5 \text{ MHz} \times \frac{10^6 \text{ Hz}}{1 \text{ MHz}} = 95.5 \times 10^6 \text{ Hz} = 9.55 \times 10^7 \text{ Hz}\)
Frequency: GHz → MHz
2.4 GHz to MHz
1 GHz = 1 000 MHz\(2.4 \text{ GHz} \times \frac{1000 \text{ MHz}}{1 \text{ GHz}} = 2.4 \times 1000 \text{ MHz} = 2400 \text{ MHz}\)
Volume: L → mL
1.5 L to milliliters
1 L = 1 000 mL\(1.5 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 1.5 \times 1000 \text{ mL} = 1500 \text{ mL}\)

Solved Examples

Example 1: Convert 2.5 × 10⁶ μm to km
Method 1: Direct conversion 1 μm = 10⁻⁶ m and 1 km = 10³ m So 1 μm = 10⁻⁶ m ÷ 10³ m/km = 10⁻⁹ km
\[2.5 \times 10^6 \text{ μm} \times 10^{-9} \frac{ \text{km}}{ \text{μm}} = 2.5 \times 10^{-3} \text{ km} = 0.0025 \text{ km}\]
Method 2: Step-by-step
\[2.5 \times 10^6 \text{ μm} \times \frac{10^{-6} \text{ m}}{1 \text{ μm}} \times \frac{1 \text{ km}}{10^3 \text{ m}} = 0.0025 \text{ km}\]
Result: 2.5 × 10⁶ μm = 0.0025 km = 2.5 mm
Example 2: A movie lasts 2 hours and 15 minutes. Express this in seconds.
Step 1: Convert to total minutes
\[2 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} + 15 \text{ min} = 120 \text{ min} + 15 \text{ min} = 135 \text{ min}\]
Step 2: Convert minutes to seconds
\[135 \text{ min} \times \frac{60 \text{ s}}{1 \text{ min}} = 8 100 \text{ s}\]
Result: 2 h 15 min = 8 100 s
Example 3: Convert 3.2 × 10⁻⁴ kg to mg
Step 1: Convert kg to g
\[3.2 \times 10^{-4} \text{ kg} \times \frac{1 000 \text{ g}}{1 \text{ kg}} = 3.2 \times 10^{-4} \times 10^3 \text{ g} = 3.2 \times 10^{-1} \text{ g}\]
Step 2: Convert g to mg
\[3.2 \times 10^{-1} \text{ g} \times \frac{1 000 \text{ mg}}{1 \text{ g}} = 3.2 \times 10^{-1} \times 10^3 \text{ mg} = 3.2 \times 10^2 \text{ mg} = 320 \text{ mg}\]
Result: 3.2 × 10⁻⁴ kg = 320 mg
Example 4: A radio wave has a frequency of 95.5 MHz. Convert this to Hz and kHz.
Step 1: Convert MHz to Hz 1 MHz = 10⁶ Hz
\[95.5 \text{ MHz} \times \frac{10^6 \text{ Hz}}{1 \text{ MHz}} = 95.5 \times 10^6 \text{ Hz} = 9.55 \times 10^7 \text{ Hz}\]
Step 2: Convert Hz to kHz 1 kHz = 10³ Hz, so 1 Hz = 10⁻³ kHz
\[9.55 \times 10^7 \text{ Hz} \times \frac{1 \text{ kHz}}{10^3 \text{ Hz}} = 9.55 \times 10^4 \text{ kHz} = 95 500 \text{ kHz}\]
Result: 95.5 MHz = 9.55 × 10⁷ Hz = 95 500 kHz