Theory Exercises

Two-Dimensional (Area) Unit Conversion

An area or surface is a two-dimensional space that can be measured in square units.

We can relate surface units with length units because area is derived from length measurements. For example, a square that is 10 meters on each side has an area of 100 square meters (m²):

Metric Prefixes for Area Units

Therefore, area prefixes work the same way as length prefixes but it goes in hundreds instead of tens.

Area UnitArea FactorExample Conversion
Mm²(10²)⁶ = 100¹²1 Mm² = 10²⁴ m²
km²(10²)³ = 100³1 km² = 10⁶ m²
hm²(10²)² = 100²1 hm² = 10⁴ m²
dam²(10²)¹ = 100¹1 dam² = 10² m²
(10²)⁰ = 100⁰Base unit
dm²(10²)⁻¹ = 100⁻¹1 m² = 10⁻² dm²
cm²(10²)⁻² = 10⁻⁴1 cm² = 10⁻⁴ m²
mm²(10²)⁻³ = 100⁻³1 mm² = 10⁻⁶ m²
μm²(10²)⁻⁶ = 100⁻¹²1 μm² = 10⁻²⁴ m²
Desired ConversionEquivalence RelationshipFormula and Calculation
2.5 km² to m²1 km² = 10⁶ m²\(2.5 \text{ km}^2 \times \frac{10^6 \text{ m}^2}{1 \text{ km}^2} = 2.5 \times 10^6 \text{ m}^2\)
0.8 hm² to m²1 hm² = 10⁴ m²\(0.8 \text{ hm}^2 \times \frac{10^4 \text{ m}^2}{1 \text{ hm}^2} = 8 \times 10^3 \text{ m}^2\)
150 dam² to m²1 dam² = 10² m²\(150 \text{ dam}^2 \times \frac{10^2 \text{ m}^2}{1 \text{ dam}^2} = 1.5 \times 10^4 \text{ m}^2\)
3.2 m² to dm²1 m² = 10² dm²\(3.2 \text{ m}^2 \times \frac{10^2 \text{ dm}^2}{1 \text{ m}^2} = 3.2 \times 10^2 \text{ dm}^2\)
0.75 m² to cm²1 m² = 10⁴ cm²\(0.75 \text{ m}^2 \times \frac{10^4 \text{ cm}^2}{1 \text{ m}^2} = 7.5 \times 10^3 \text{ cm}^2\)
4.6 m² to mm²1 m² = 10⁶ mm²\(4.6 \text{ m}^2 \times \frac{10^6 \text{ mm}^2}{1 \text{ m}^2} = 4.6 \times 10^6 \text{ mm}^2\)
2.8 km² to cm²1 km² = 10⁶ m², 1 m² = 10⁴ cm²\(2.8 \text{ km}^2 \times \frac{10^6 \text{ m}^2}{1 \text{ km}^2} \times \frac{10^4 \text{ cm}^2}{1 \text{ m}^2} = 2.8 \times 10^{10} \text{ cm}^2\)
0.35 hm² to mm²1 hm² = 10⁴ m², 1 m² = 10⁶ mm²\(0.35 \text{ hm}^2 \times \frac{10^4 \text{ m}^2}{1 \text{ hm}^2} \times \frac{10^6 \text{ mm}^2}{1 \text{ m}^2} = 3.5 \times 10^9 \text{ mm}^2\)
120 dam² to dm²1 dam² = 10² m², 1 m² = 10² dm²\(120 \text{ dam}^2 \times \frac{10^2 \text{ m}^2}{1 \text{ dam}^2} \times \frac{10^2 \text{ dm}^2}{1 \text{ m}^2} = 1.2 \times 10^6 \text{ dm}^2\)

Solved Examples:

Example 1: Convert 0.5 km² to cm²
Method 1: Direct conversion 1 km = 1,000 m = 100,000 cm So 1 km² = (100,000 cm)² = 10,000,000,000 cm² = 10¹⁰ cm²
\[0.5 \text{ km}^2 \times \frac{10^{10} \text{ cm}^2}{1 \text{ km}^2} = 5 \times 10^9 \text{ cm}^2\]
Method 2: Step-by-step
\[0.5 \text{ km}^2 \times \frac{10^6 \text{ m}^2}{1 \text{ km}^2} \times \frac{10^4 \text{ cm}^2}{1 \text{ m}^2} = 0.5 \times 10^{10} \text{ cm}^2 = 5 \times 10^9 \text{ cm}^2\]
Result: 0.5 km² = 5 × 10⁹ cm² = 5,000,000,000 cm²
Example 2: A rectangular swimming pool is 25 m long and 12.5 m wide. Calculate its area in hectares and square feet.
Step 1: Calculate area in m²
\[ \text{Area} = 25 \text{ m} \times 12.5 \text{ m} = 312.5 \text{ m}^2\]
Step 2: Convert to hectares
\[312.5 \text{ m}^2 \times \frac{1 \text{ ha}}{10,000 \text{ m}^2} = 0.03125 \text{ ha}\]
Step 3: Convert to square feet 1 m² ≈ 10.76 ft²
\[312.5 \text{ m}^2 \times \frac{10.76 \text{ ft}^2}{1 \text{ m}^2} ≈ 3,363 \text{ ft}^2\]
Result: Pool area = 312.5 m² = 0.03125 ha ≈ 3,363 ft²
Example 3: A garden plot is 15 m long and 800 cm wide. What is its area in dm²?
Method 1: Convert everything to dm first Length: 15 m = 150 dm Width: 800 cm = 80 dm
\[ \text{Area} = 150 \text{ dm} \times 80 \text{ dm} = 12,000 \text{ dm}^2\]
Method 2: Calculate in m², then convert Width: 800 cm = 8 m
\[ \text{Area} = 15 \text{ m} \times 8 \text{ m} = 120 \text{ m}^2\]
\[120 \text{ m}^2 \times \frac{100 \text{ dm}^2}{1 \text{ m}^2} = 12,000 \text{ dm}^2\]
Result: Garden area = 12,000 dm²
Example 4: A circular field has a diameter of 200 m. Find its area in hectares and acres.
Step 1: Find radius and calculate area Radius = 200 m ÷ 2 = 100 m
\[A = \pi r^2 = 3.14159 \times (100 \text{ m})^2 = 31,416 \text{ m}^2\]
Step 2: Convert to hectares
\[31,416 \text{ m}^2 \times \frac{1 \text{ ha}}{10,000 \text{ m}^2} = 3.14 \text{ ha}\]
Step 3: Convert to acres
\[31,416 \text{ m}^2 \times \frac{1 \text{ acre}}{4,047 \text{ m}^2} ≈ 7.76 \text{ acres}\]
Result: Circular field area = 31,416 m² = 3.14 ha ≈ 7.76 acres
Example 5: A compound shape consists of a rectangle (50 cm × 30 cm) with a semicircle (radius 15 cm) attached to one side. Find the total area in mm².
Step 1: Calculate rectangle area
\[A_{rectangle} = 50 \text{ cm} \times 30 \text{ cm} = 1,500 \text{ cm}^2\]
Step 2: Calculate semicircle area
\[A_{semicircle} = \frac{1}{2} \pi r^2 = \frac{1}{2} \times 3.14 \times (15 \text{ cm})^2 = \frac{1}{2} \times 3.14 \times 225 = 353.25 \text{ cm}^2\]
Step 3: Calculate total area
\[A_{total} = 1,500 + 353.25 = 1,853.25 \text{ cm}^2\]
Step 4: Convert to mm²
\[1,853.25 \text{ cm}^2 \times \frac{100 \text{ mm}^2}{1 \text{ cm}^2} = 185,325 \text{ mm}^2\]
Result: Total area = 185,325 mm²