Theory Exercises

Three-Dimensional (Volume) Unit Conversion

Volume is a three-dimensional space that can be measured in cubic units.

We can relate volume units with length units because volume is derived from length measurements. For example, a cube that is 10 meters on each side has a volume of 1,000 cubic meters (m³):

Metric Prefixes for Volume Units

Therefore, volume prefixes work the same way as length prefixes but it goes in thousands instead of tens.

Volume UnitVolume FactorExample Conversion
Mm³(10³)⁶ = 10¹⁸1 Mm³ = 10¹⁸ m³
km³(10³)³ = 10⁹1 km³ = 10⁹ m³
hm³(10³)² = 10⁶1 hm³ = 10⁶ m³
dam³(10³)¹ = 10³1 dam³ = 10³ m³
(10³)⁰ = 10⁰Base unit
dm³(10³)⁻¹ = 10⁻³1 dm³ = 10⁻³ m³
cm³(10³)⁻² = 10⁻⁶1 cm³ = 10⁻⁶ m³
mm³(10³)⁻³ = 10⁻⁹1 mm³ = 10⁻⁹ m³
μm³(10³)⁻⁶ = 10⁻¹⁸1 μm³ = 10⁻¹⁸ m³
Desired ConversionEquivalence RelationshipFormula and Calculation
2.5 km³ to m³1 km³ = 10⁹ m³\(2.5 \text{ km}^3 \times \frac{10^9 \text{ m}^3}{1 \text{ km}^3} = 2.5 \times 10^9 \text{ m}^3\)
0.8 hm³ to m³1 hm³ = 10⁶ m³\(0.8 \text{ hm}^3 \times \frac{10^6 \text{ m}^3}{1 \text{ hm}^3} = 8 \times 10^5 \text{ m}^3\)
150 dam³ to m³1 dam³ = 10³ m³\(150 \text{ dam}^3 \times \frac{10^3 \text{ m}^3}{1 \text{ dam}^3} = 1.5 \times 10^5 \text{ m}^3\)
3.2 m³ to dm³1 m³ = 10³ dm³\(3.2 \text{ m}^3 \times \frac{10^3 \text{ dm}^3}{1 \text{ m}^3} = 3.2 \times 10^3 \text{ dm}^3\)
0.75 m³ to cm³1 m³ = 10⁶ cm³\(0.75 \text{ m}^3 \times \frac{10^6 \text{ cm}^3}{1 \text{ m}^3} = 7.5 \times 10^5 \text{ cm}^3\)
4.6 m³ to mm³1 m³ = 10⁹ mm³\(4.6 \text{ m}^3 \times \frac{10^9 \text{ mm}^3}{1 \text{ m}^3} = 4.6 \times 10^9 \text{ mm}^3\)
2.8 km³ to cm³1 km³ = 10⁹ m³, 1 m³ = 10⁶ cm³\(2.8 \text{ km}^3 \times \frac{10^9 \text{ m}^3}{1 \text{ km}^3} \times \frac{10^6 \text{ cm}^3}{1 \text{ m}^3} = 2.8 \times 10^{15} \text{ cm}^3\)
0.35 hm³ to mm³1 hm³ = 10⁶ m³, 1 m³ = 10⁹ mm³\(0.35 \text{ hm}^3 \times \frac{10^6 \text{ m}^3}{1 \text{ hm}^3} \times \frac{10^9 \text{ mm}^3}{1 \text{ m}^3} = 3.5 \times 10^{14} \text{ mm}^3\)
120 dam³ to dm³1 dam³ = 10³ m³, 1 m³ = 10³ dm³\(120 \text{ dam}^3 \times \frac{10^3 \text{ m}^3}{1 \text{ dam}^3} \times \frac{10^3 \text{ dm}^3}{1 \text{ m}^3} = 1.2 \times 10^8 \text{ dm}^3\)

Solved Examples

Example 1: Convert 0.5 km³ to cm³
Method 1: Direct conversion 1 km = 1,000 m = 100,000 cm So 1 km³ = (100,000 cm)³ = 10¹⁵ cm³ \(0.5 \text{ km}^3 \times \frac{10^{15} \text{ cm}^3}{1 \text{ km}^3} = 5 \times 10^{14} \text{ cm}^3\) Method 2: Step-by-step \(0.5 \text{ km}^3 \times \frac{10^9 \text{ m}^3}{1 \text{ km}^3} \times \frac{10^6 \text{ cm}^3}{1 \text{ m}^3} = 0.5 \times 10^{15} \text{ cm}^3 = 5 \times 10^{14} \text{ cm}^3\) Result: 0.5 km³ = 5 × 10¹⁴ cm³ = 500,000,000,000,000 cm³
Example 2: A rectangular water tank is 25 m long and 12.5 m wide and 2 m high. Calculate its volume in liters and cubic feet.
Step 1: Calculate volume in m³ \( \text{Volume} = 25 \text{ m} \times 12.5 \text{ m} \times 2 \text{ m} = 625 \text{ m}^3\) Step 2: Convert to liters \(625 \text{ m}^3 \times \frac{1,000 \text{ L}}{1 \text{ m}^3} = 625,000 \text{ L}\) Step 3: Convert to cubic feet 1 m³ ≈ 35.31 ft³ \(625 \text{ m}^3 \times \frac{35.31 \text{ ft}^3}{1 \text{ m}^3} ≈ 22,069 \text{ ft}^3\) Result: Tank volume = 625 m³ = 625,000 L ≈ 22,069 ft³
Example 3: A swimming pool is 15 m long and 800 cm wide and 150 cm deep. What is its volume in liters?
Method 1: Convert everything to m first Length: 15 m Width: 800 cm = 8 m Depth: 150 cm = 1.5 m \( \text{Volume} = 15 \text{ m} \times 8 \text{ m} \times 1.5 \text{ m} = 180 \text{ m}^3\) Method 2: Convert to liters \(180 \text{ m}^3 \times \frac{1,000 \text{ L}}{1 \text{ m}^3} = 180,000 \text{ L}\) Result: Pool volume = 180,000 L
Example 4: A cylindrical tank has a diameter of 200 cm and height 150 cm. Find its volume in liters and gallons.
Step 1: Find radius and calculate volume Radius = 200 cm ÷ 2 = 100 cm = 1 m, Height = 150 cm = 1.5 m \(V = \pi r^2 h = 3.14159 \times (1 \text{ m})^2 \times 1.5 \text{ m} = 4.71 \text{ m}^3\) Step 2: Convert to liters \(4.71 \text{ m}^3 \times \frac{1,000 \text{ L}}{1 \text{ m}^3} = 4,710 \text{ L}\) Step 3: Convert to gallons \(4,710 \text{ L} \times \frac{1 \text{ gal}}{3.785 \text{ L}} ≈ 1,244 \text{ gal}\) Result: Tank volume = 4.71 m³ = 4,710 L ≈ 1,244 gal
Example 5: A cube has sides of 20 cm. What is its volume in liters and milliliters?
Step 1: Calculate volume in cm³ \(V = (20 \text{ cm})^3 = 8,000 \text{ cm}^3\) Step 2: Convert to liters Since 1 L = 1,000 cm³: \(8,000 \text{ cm}^3 \times \frac{1 \text{ L}}{1,000 \text{ cm}^3} = 8 \text{ L}\) Step 3: Convert to milliliters Since 1 cm³ = 1 mL: \(8,000 \text{ cm}^3 = 8,000 \text{ mL}\) Result: Cube volume = 8,000 cm³ = 8 L = 8,000 mL